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1 Introduction

The spin structure of the nucleon remains one of the most challenging and controversial

problems in hadronic physics [1–3]. Many careful measurements of the nucleon’s g1 struc-

ture function have determined that quarks carry only some 30% of the proton’s longitudinal

spin, a feature which is now qualitatively understood [4]. Moreover, polarized pp scatter-

ing observables [5] and open charm production in deep inelastic scattering [6] suggest that

gluons carry an even smaller fraction of the longitudinal spin. Presumably, the remainder

arises from quark and gluon orbital angular momentum.

Although less attention has been paid to it, there are a number of intriguing questions

associated with the transverse spin structure of the nucleon. An example is the study of

the g2 structure function, which only in recent years has been probed experimentally with

high precision. Unlike all other inclusive deep-inelastic scattering (DIS) observables, the g2
structure function is unique in directly revealing information on the long-range quark-gluon

correlations in the nucleon. In the language of the operator product expansion (OPE) these

are parametrized through matrix elements of higher twist operators, which characterize the

strength of nonperturbative multi-parton interactions. (In the OPE “twist” is defined as the

mass dimension minus the spin of a local operator.) In other inclusive structure functions
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higher twist contributions are suppressed by powers of the four-momentum transfer squared

Q2, whereas in g2 these appear at the same order as the leading twist.

As discussed by Wandzura and Wilczek [7], the leading twist contribution to the g2
structure function, which is denoted by gWW

2 , can be expressed in terms of the leading

twist (LT) part of the g1 structure function,

gWW
2 (xB) = −gLT

1 (xB) +

∫ 1

xB

dy

y
gLT
1 (y) , (1.1)

where xB is the Bjorken scaling variable, and we suppress the explicit dependence of the

structure functions on Q2. The Wandzura-Wilczek (WW) relation asserts that the total

g2 structure function is given by the leading twist approximation (1.1),

g2(xB)
?
= gWW

2 (xB) , (1.2)

which would be valid in the absence of higher twist contributions. In this case the g2
structure function would satisfy the Burkhardt-Cottingham (BC) sum rule [8],

∫ 1

0
dxB g2(xB) = 0 . (1.3)

Its violation would also signal the presence of twist-3 or higher contributions. Unlike the

WW relation, however, the validity of the BC sum rule (which is yet to be conclusively

demonstrated experimentally [9, 10]) would not necessarily imply that higher twist terms

vanish [11, 12].

In this paper we explore the physics that can lead to the breaking of the WW relation

in QCD, preliminary results for which have appeared in ref. [13]. In section II we present a

detailed theoretical analysis of quark-quark and quark-gluon-quark correlation functions,

and discuss the so-called Lorentz invariance relations and equations of motion relations.

From these we show that the WW relation is valid if pure twist-3 and quark mass terms are

neglected, in agreement with OPE results. We find that there are two distinct contributions

with twist 3, denoted by g̃T and ĝT , which correspond to two different “projections” of the

quark-gluon-quark correlator. An explicit demonstration of our findings is made for the

case of a point-like quark target, which shows that the twist-3 terms can in principle be as

large as the twist-2 terms.

In section III we discuss the phenomenology of the WW relation for both the proton

and neutron, and find that the available data from SLAC and Jefferson Lab indicate a

breaking of the relation at the level of 15–40% of the size of g2 within the 1-σ confidence

level. The two twist-3 terms can be separated by measuring, in addition to g2, the function

g
(1)
1T in semi-inclusive DIS, as we outline in section IV. There we explain the importance of

measuring the two twist-3 functions g̃T and ĝT separately, and the insight which this can

bring, for example, to understanding the physics of quark-gluon-quark correlations [14], or

to determining the QCD evolution kernel for g2 and the large momentum tails of transverse

momentum distributions (TMDs).

Finally, in section V we briefly summarize our findings. Some technical details for the

analysis with a non-lightlike Wilson line and the model calculation of parton correlation

functions are presented in the appendices.
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2 Theoretical analysis

In this section we set forth the framework for our analysis of the WW relation by first

defining quark-quark correlation functions and examining their most general Lorentz and

Dirac decomposition. This is followed by a discussion of quark-gluon-quark correlators, and

of the Lorentz invariance and equations of motion relations from which a generalization of

the WW relation is derived.

2.1 Parton correlation functions

The quark-quark correlator for a quark of momentum k in a nucleon with momentum P

and spin S is defined as

Φa
ij(k, P, S; v) =

∫
d4ξ

(2π)4
eik·ξ 〈P, S |ψ a

j (0)Wv
(0,∞) Wv

(∞,ξ) ψ
a
i (ξ) |P, S〉 , (2.1)

where the quark fields ψa
i are labeled by the flavor index a and Dirac index i. For ease of

notation, the Dirac and flavor indices will be suppressed in the following. The operator

Wv
(0,∞) represents a Wilson line (or gauge link) from the origin to infinity along the direction

specified by the vector v, and is necessary to ensure gauge invariance of the correlator. The

gauge links contain transverse pieces at infinity [15, 16] and their precise form depends on

the process [17, 18]. In a covariant gauge, the dependence of the correlator Φ on v is

evident from the presence of the Wilson line in the direction conjugate to v. In light-cone

gauges the vector v is orthogonal to the gauge field A, v ·A = 0, and the dependence on v

appears explicitly only in the gauge field propagators.

In tree-level analyses of semi-inclusive DIS (SIDIS) [19, 20] or the Drell-Yan pro-

cess [21–23] v is identified with the light-cone vector n−, where n2
− = 0 = n2

+ and

n− · n+ = 1, with n+ the corresponding orthogonal light-cone vector proportional to P

(up to mass corrections). However, factorization theorems beyond tree-level [24–27] de-

mand a slightly non-lightlike vector v in order to regularize light-cone divergences. We

leave a more detailed discussion of the effect of the choice of v to appendix A and consider

v = n− unless otherwise specified.

The correlator Φ can be parametrized in terms of structures built from the four vectors

P , S, k and v. Its full decomposition has been studied in ref. [28] (and further generalized

in ref. [29]). It contains 12 scalar functions Ai already known from refs. [19, 30], and 20

scalar functions Bi which are multiplied by factors depending explicitly on v, which were

first introduced in ref. [31] and called parton correlation functions (PCFs) in ref. [27]. For

brevity we consider only those terms of the full decomposition [28] which are necessary for

the present analysis,

Φ(k, P, S; v) =M/Sγ5A6 +
k · S
M

/Pγ5A7 +
k · S
M

/kγ5A8 +M
(S · v)
(P · v)

/Pγ5B11

+M
(S · v)
(P · v)/kγ5B12 +M

(k · S)

(P · v)/vγ5B13 +M3 (S · v)
(P · v)2 /vγ5B14 + · · · ,

(2.2)

where the nucleon mass M is explicitly included to ensure that all PCFs have the same

mass dimension. (Any other hadronic scale, such as ΛQCD, can be chosen, but we follow

the choice used in the TMD literature [19].)
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The PCFs Ai and Bi are in principle functions of the scalar products P · k, k2, P · v,
k · v and v2. However, because the correlator Φ is invariant under the scale transformation

v → λv, where λ is a constant, the PCFs can only depend on the scalar products, P · k,
k2, and on the ratio k · v/P · v. We therefore choose the PCFs to depend on the parton

virtuality τ ≡ k2, on σ ≡ 2P · k, and on the parton momentum fraction x = k · n−/P · n−.

We emphasize that the explicit dependence on x is induced in general by the v dependence

of the correlator Φ.

These considerations apply even when the correlator is integrated over the parton trans-

verse momentum, and in fact the Bi terms give contributions also to standard collinear par-

ton distribution functions (PDFs), such as the helicity distribution — see eq. (2.19) below.

However, when the correlator is fully integrated over d4k theBi no longer contribute; indeed
∫
d4kΦ(k, P, S; v) = 〈P, S |ψ(0)ψi(0) |P, S〉 , (2.3)

and the dependence of the integral on v disappears because Wv
(0,∞)Wv

(∞,0) = 1.

In TMD factorization the relevant objects are the integrals of Φ(k, P, S; v) over k− =

kµn
µ
+,

Φ(x,kT ) =

∫
dk− Φ(k, P, S; v)

=

∫
dξ−d2ξT

(2π)3
eik·ξ 〈P, S |ψ(0)Wv

(0,∞) Wv
(∞,ξ) ψ(ξ) |P, S〉

∣∣∣
ξ+=0

. (2.4)

It is also useful to define the kT -integrated correlators

Φ(x)=

∫
d2

kT Φ(x,kT )=

∫
dξ−

2π
eik·ξ 〈P, S |ψ(0)Wv

(0,∞) Wv
(∞,ξ) ψ(ξ) |P, S〉

∣∣∣
ξ+=ξT =0

LC
=

∫
dξ−

2π
eik·ξ 〈P, S |ψ(0)ψ(ξ) |P, S〉

∣∣∣
ξ+=ξT =0

, (2.5)

Φα
∂ (x)=

∫
d2

kT k
α
T Φ(x,kT )=

∫
dξ−

2π
eik·ξ 〈P, S |ψ(0)Wv

(0,∞) i∂
α
T Wv

(∞,ξ) ψ(ξ) |P, S〉
∣∣∣
ξ+=ξT =0

LC
=

∫
dξ−

2π
eik·ξ 〈P, S |ψ(0) i∂α

T ψ(ξ) |P, S〉
∣∣∣
ξ+=ξT =0

. (2.6)

where LC refers to the correlators in the light-cone gauge. The correlator Φα
∂ actually

depends on the detailed form of the Wilson line, and changes, for example, between the

SIDIS and Drell-Yan processes. However, for our discussion this will not be relevant and

we can consider the average between the correlator for SIDIS and Drell-Yan [15].

For any correlator, we can introduce the Dirac projections

Φ[Γ] ≡ 1

2
Tr[ΓΦ] , (2.7)

where Γ is a matrix in Dirac space. The transverse momentum dependent parton dis-

tribution functions then appear as terms of the general decomposition of the projections

Φ[Γ](x,kT ), the full list of which can be found in refs. [20, 28]. Usually a TMD is defined to

have “twist” equal to n if in the expansion of the correlator it appears at order (M/P+)n−2,

– 4 –
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where P+ = Pµn
µ
−. In physical observables, TMDs of twist n appear with a suppression

factor (M/Q)n−2 compared to twist-2 TMDs. We finally note that at present TMD fac-

torization for SIDIS has been proven for twist-2 TMDs only [24], and problems are known

to occur at twist 3, indicating that the formalism may not yet be complete [32, 33].

For the following discussion we shall need the definitions of certain TMDs (note that

here and in the following α is restricted to be a transverse index) [20]

Φ[γ+γ5](x,kT ) = SL g1L(x,k2
T ) +

kT · ST

M
g1T (x,k2

T ) , (2.8)

Φ[γαγ5](x,kT ) =
M

P+

[
Sα

T gT (x,k2
T ) + SL

kα
T

M
g⊥L (x,k2

T )

− kα
T k

ρ
T + 1

2 k2
T g

αρ
T

M2
STρ g

⊥
T (x,k2

T ) −
ǫαρ
T kTρ

M
g⊥(x,k2

T )

]
, (2.9)

Φ[iσα+γ5](x,kT ) = Sα
T h1(x,k

2
T ) + SL

pα
T

M
h⊥1L(x,k2

T )

− pα
T p

ρ
T − 1

2 p
2
T g

αρ
T

M2
STρ h

⊥
1T (x,k2

T ) − ǫαρ
T pTρ

M
h⊥1 (x,k2

T ) , (2.10)

where SL = S+M/P+, and the transverse tensors gαρ
T and ǫαρ

T are defined as

gαρ
T = gαρ − nα

+n
ρ
− − nα

−n
ρ
+ , (2.11)

ǫαρ
T = ǫαρβσ(n+)β(n−)σ. (2.12)

For the kT -integrated distributions, we correspondingly have

Φ[γ+γ5](x) = SL g1L(x) , (2.13)

Φ[iσα+γ5](x) = Sα
T h1(x) , (2.14)

Φ
α[γ+γ5]
∂ (x) = Sα

TMg
(1)
1T (x) , (2.15)

Φ[γαγ5](x) =
M

P+
Sα

T gT (x) , (2.16)

where for any TMD f = f(x,k2
T ) we define

f (1)(x,k2
T ) =

k2
T

2M2
f(x,k2

T ) , (2.17)

f (1)(x) =

∫
d2

kT f
(1)(x,k2

T ) . (2.18)

To avoid confusion with the structure function g1, here we use the notation g1L also for

the helicity-dependent PDF, contrary to what is used in some of the TMD literature [20].

The connection between the TMDs and the Ai and Bi amplitudes has been worked

out in detail in the appendix of ref. [34] for v = n−. In appendix A we extend these results

to a non-lightlike vector v. We shall not repeat here the calculations but only quote the

results relevant for our discussion, namely

g1L(x,k2
T ) =

∫
dσdτ δ(τ − xσ + x2M2 + k

2
T )

×
(
−A6 −B11 − xB12) −

σ − 2xM2

2M2
(A7 + xA8)

)
, (2.19)

– 5 –
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g1T (x,k2
T ) =

∫
dσdτ δ(τ − xσ + x2M2 + k

2
T )
(
A7 + xA8

)
, (2.20)

gT (x,k2
T ) =

∫
dσdτ δ(τ − xσ + x2M2 + k

2
T )

(
−A6 −

τ − xσ + x2M2

2M2
A8

)
. (2.21)

As anticipated, we see that Bi terms appear also in the function g1L, which remains non-

zero after the correlator is integrated over kT .

2.2 Lorentz invariance relations

From the preceding discussion, using the techniques discussed for example in ref. [30], it is

possible to derive the so-called Lorentz invariance relation (LIR)

gT (x) = g1L(x) +
d

dx
g
(1)
1T (x) + ĝT (x) , (2.22)

where the function ĝT is given by

ĝT (x) =

∫
d2

kTdσdτ δ(τ − xσ + x2M2 + k
2
T )

[
B11+xB12−

k2
T

2M2

(
∂A7

∂x
+x

∂A8

∂x

)]

+ π

∫
dσdτ δ(τ−xσ+x2M2+k

2
T )k

2
T

σ − 2xM2

2M2

(
A7 + xA8

)∣∣∣∣
k2

T
→∞

k2
T
→0

.

(2.23)

The proper operator definition for ĝT can be traced back to ref. [35] (see also [36, 37]), and

requires the introduction of the twist-3 quark-gluon-quark correlator

iΦα
F (x, x′) =

∫
dξ−dη−

(2π)2
eik·ξ ei(k

′−k)·η δαρ
T 〈P |ψ(0)Wv

(0,η) ig F
+α(η)Wv

(η,ξ) ψ(ξ)|P 〉
∣∣∣ξ+=ξT =0
η+=ηT =0

LC
=

∫
dξ−dη−

(2π)2
eik·ξ ei(k

′−k)·η〈P |ψ(0) ig ∂+
η A

α
T (η)ψ(ξ)|P 〉

∣∣∣ξ+=ξT =0
η+=ηT =0

, (2.24)

where k′ is the gluon momentum, x′ = k′ · n−/P · n−, and F+α is the gluon field strength

tensor. Note that this correlator has been discussed in slightly different forms in refs. [15,

38–40], for example. It can be expanded in terms of four scalar functions GF , G̃F , HF and

EF according to [39, 40]

iΦα
F (x, x′) =

M

4

[
GF (x, x′)iǫαρ

T STρ + G̃F (x, x′)Sα
T γ5 +HF (x, x′)SLγ5γ

α
T +EF (x, x′) γα

T

]
/n+ .

(2.25)

Hermiticity and parity invariance impose that these functions are real and either odd or

even under the interchange of x and x′ [40],

GF (x, x′) = GF (x′, x) , G̃F (x, x′) = −G̃F (x′, x) , (2.26)

EF (x, x′) = EF (x′, x) , HF (x, x′) = −HF (x′, x) . (2.27)

We can then express the function ĝT as

MSα
T ĝT (x) = −

∫
dx′

iΦ
α[γ+γ5]
F (x′, x)

(x− x′)2
= MSα

T P
∫
dx′

G̃F (x, x′)/(x− x′)

x− x′
, (2.28)

– 6 –
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where P denotes the principal value integral. (The need for the principal value was ap-

parently overlooked in refs. [36, 37].) The imaginary part arising from the pole at x = x′

cannot give a contribution to the LIR in eq. (2.22), but rather contributes to a LIR involv-

ing the functions fT and f
⊥(1)
1T , which we do not discuss here. We note that ĝT is a “pure

twist-3” function, being part of the twist-3 correlator of eq. (2.24). Since the integrand in

eq. (2.28) is antisymmetric in x↔ x′, one obtains the nontrivial property

∫ 1

0
dx ĝT (x) = 0 . (2.29)

In some analyses [30, 41] ĝT was believed to vanish because

(i) the Bi parton correlation functions were not taken into account,

(ii) the partial derivatives in eq. (2.23) were neglected since an explicit x-dependence of

the PCFs is generated only through the additional v-dependence,

(iii) the boundary terms like the last terms in (2.23) were neglected.

However, none of these assumptions is justified, as we show explicitly in a quark-target

perturbative calculation in appendix B. We can further draw some model-independent

conclusions about the boundary terms by comparing them with the expression for g1T in

eq. (2.20). Positivity bounds imply that |k2
T g1T | ≤ M |kT |f1 [42], which is sufficient to

guarantee that the k2
T = 0 boundary term indeed vanishes. However, since g1T behaves as

1/k4
T at large kT [33], the boundary term at k2

T = ∞ cannot be neglected.

If ĝT is nonetheless neglected, it is possible to express the twist-3 function gT in terms of

the twist-2 functions g1L and g1T [19, 30]. Relations of this kind have been often mistakenly

called Lorentz invariance relations [19, 30, 43], but should not be confused with the correct

Lorentz invariance relations such as in eq. (2.22).

In the literature, model calculations have been used to argue that the pure twist-3

terms are not necessarily small [11, 44]. For example, ĝT can be computed perturbatively

in the quark-target model of refs. [37, 44]. Using eqs. (38), (40) and (42) of ref. [37] one finds

gT (x) − g1L(x) =
αs

2π
CF ln

Q2

µ2

[
2x− δ(1 − x)

]
, (2.30)

g
(1)
1T (x) = −αs

2π
CF ln

Q2

µ2
x(1 − x) , (2.31)

where CF = 4/3, µ is an infrared cutoff, and from eq. (2.22) one has

ĝT (x) =
αs

2π
CF ln

Q2

µ2

[
1 − δ(1 − x)

]
. (2.32)

From this calculation one can see that ĝT is comparable in size to the other twist-2 func-

tions. Moreover, its lowest moment vanishes, so that the nontrivial requirement of eq. (2.29)

is fulfilled. In appendix C we confirm the above result (for x < 1 only) starting directly

from the definition in eq. (2.28).

– 7 –
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2.3 Equations of motion relations

The equations of motion (EOM) for quarks, /Dψ = mψ with m the quark mass, imply

further relations between twist-2 and pure twist-3 functions (namely, between qq and qgq

matrix elements). They are referred to as “equations of motion relations”, and for the case

of interest here are expressed as

g
(1)
1T (x) = xgT (x) − xg̃T (x) − m

M
h1(x) , (2.33)

where

xMSσ
T g̃T (x)=P

∫
dx′

iΦ
[γ+γσ

T γ
ρ

T
γ5]

Fρ (x′, x)

x− x′
=MSσ

T

(
P
∫
dx′
GF (x, x′)

2(x′−x) +

∫
dx′
G̃F (x, x′)

2(x′−x)

)
.

(2.34)

The full list of EOM relations can be found in ref. [20].

Using eq. (2.33) to eliminate g
(1)
1T (x) in eq. (2.22), one finds the differential equation

x
d

dx

(
gT − g̃T − m

M

h1

x

)
+ g1L − g̃T − m

M

h1

x
+ ĝT = 0 . (2.35)

Assuming that the relevant functions are integrable by
∫ 1
x
(dy/y) and solving for gT one finds

gT (x) =

∫ 1

x

dy

y

(
g1L(y) + ĝT (y)

)
+ g̃⋆

T (x) +
m

M
(h1/x)

⋆(x) , (2.36)

where we have introduced the shorthand notation

f⋆(x) ≡ f(x) −
∫ 1

x

dy

y
f(y) = −

∫ 1

x

dy

y

d

dy
[yf(y)] . (2.37)

Note that if the integrals over x and y can be exchanged, the function f satisfies

∫ 1

0
dx f⋆(x) = 0 . (2.38)

In general, however, this is not necessarily true, as stressed in refs. [11, 12].

In DIS on a quark-target, g̃T can be computed using eqs. (38) and (43) of ref. [37],

giving

xgT (x) − m

M
h1(x) =

αs

2π
CF ln

Q2

µ2

[
−x(1 − x) +

δ(1 − x)

2

]
, (2.39)

and using eq. (2.33) we obtain

g̃T (x) =
αs

2π
CF ln

Q2

µ2

δ(1 − x)

2
. (2.40)

Again we see that the twist-3 function g̃T has a size comparable to that of the other twist-2

functions.
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2.4 Breaking of the Wandzura-Wilczek relation

The part of the hadronic tensor relevant for spin-dependent DIS structure functions is given

by the standard Lorentz decomposition

W µν(P, q) =
1

P · q ε
µνρσqρ

[
Sσg1(xB , Q

2) +

(
Sσ − S · q

P · q pσ

)
g2(xB , Q

2)

]
, (2.41)

where q is the momentum of the exchanged photon and xB = Q2/(2P · q) is the Bjorken

variable. In general the structure functions g1 and g2 in eq. (2.41) are functions of the

physical (external) variables xB and Q2 and are given by convolutions of the hard γ∗-

parton scattering coefficient functions and the relevant PDFs. At leading order in αs, and

including terms up to twist 3, they can be expressed in terms of the distributions ga
1L and

ga
T (where we now explicitly include the flavor index a) introduced above as [20]

g1(x) =
1

2

∑

a

e2a g
a
1L(x) , (2.42)

g1(x) + g2(x) =
1

2

∑

a

e2a g
a
T (x) , (2.43)

where for simplicity we have suppressed the Q2 dependence. This then enables the dif-

ference between the full g2 structure function and the WW approximation (1.1) to be

written as

g2(x) − gWW
2 (x) =

1

2

∑

a

e2a

(
g̃a⋆
T (x) +

m

M
(ha

1/x)
⋆(x) +

∫ 1

x

dy

y
ĝa
T (y)

)
, (2.44)

which represents the breaking of the WW relation. Note that the right-hand-side of

eq. (2.44) contains a quark mass term and two pure twist-3 terms. This is the main

result of our analysis.

From eq. (2.38) the x integral of the pure twist-3 functions containing g̃a
T and the

mass term vanish. Using eq. (2.29), and assuming that ĝa
T is regular enough to exchange

the x and y integrals, we see that the ĝa
T term also vanishes. This implies that the above

expression for g2 satisfies the Burkhardt-Cottingham sum rule, eq. (1.3), which is not in

general guaranteed in the OPE [11, 12].

To obtain the WW relation one must neglect quark mass terms compared to the

hadron mass (which can be reasonably done for light quarks), and either neglect both of

the pure twist-3 terms (see, e.g., [45]), or assume that they cancel each other. The explicit

quark-target perturbative calculations show that such a cancellation does not take place in

general, and that the size of the WW breaking term can be comparable to the size of gWW
2 ,

gWW
2 (x) = 1 − δ(1 − x) − αs

2π
CF ln

Q2

µ2

×
[
− log

(1 − x)2

x
+

3

2
δ(1 − x) +

2x2

(1 − x)+
+

1

2

]
, (2.45)
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g2(x) − gWW
2 (x) = δ(1 − x) − 1 +

αs

2π
CF ln

Q2

µ2

×
[
− log

(1 − x)2

x
+

1

2
δ(1 − x) +

2

(1 − x)+
− 3

2

]
. (2.46)

To obtain the above expressions we again made use of the results in ref. [37]. Note that both

gWW
2 and the total g2 structure function in the quark-target model respect the BC sum rule.

3 Constraints from data

It is often stated in the literature (see e.g. ref. [46]) that the WW relation holds experi-

mentally to a good accuracy. While there are certainly indications that this may indeed

be so [9, 10], it is important to quantify the degree to which this relation holds and place

limits on the size of its violation. This is the focus of this section.

We define the experimental WW breaking term ∆ex as the difference between the

experimental data and gWW
2 ,

∆ex(xB , Q
2) = gex

2 (xB , Q
2) − gWW

2 (xB , Q
2) , (3.1)

with the Wandzura-Wilczek term computed using the LSS2006 (set 1) fit of the g1 structure

function [47]. The fit was performed including a phenomenological higher-twist term and

target mass corrections (TMC) in order to extract the pure twist-2 contribution, gLT
1 . Using

parametrizations of g1 which do not account for the power corrections in 1/Q2 [48, 49] would

risk inadvertently including spurious higher twist contributions when computing the WW

approximation. We will demonstrate the impact of this difference by comparing our gWW
2

with (gWW
2 )′ computed using the total g1 instead of gLT

1 in eq. (1.1).

For proton targets we consider data from the SLAC E142 [50] and E155x [9] experi-

ments, while for the neutron only the high-precision data sets from the SLAC E155x [9],

and Jefferson Lab E99-117 [51] and E01-012 [52] experiments, obtained using 2H or 3He

targets, are included. We checked explicitly that including the lower-precision data sets

from refs. [50, 53, 54] does not alter the fit results, except for artificially lowering the χ2

values due to the much larger errors compared to the higher-precision data sets. In total,

there are 52 data points for the proton and 18 points for the neutron, which are used sep-

arately to fit the WW breaking term ∆ of the proton and the neutron. Systematic errors,

when quoted, are added in quadrature. For the shape of ∆ we choose the form

∆(xB , α, β) = α(1 − xB)β
(
(β + 2)xB − 1

)
, (3.2)

which vanishes at xB = 1, has no divergences at xB = 0, fulfills the BC sum rule, and only

has a single node. In principle ∆ can also depend on the scale Q2; however, to simplify the

analysis, and given the relatively large experimental uncertainties on the g2 data, here we

do not consider its Q2 evolution.

The goodness of the fit is estimated using the χ2 function

χ2 =

N∑

i=1

[
∆(xBi) − ∆ex(xBi)

]2

σ2
ex(xBi)

. (3.3)
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proton χ2/d.o.f. rtot rlow rhi

(I) ∆ = 0 1.22

(II) ∆ = α(1 − xB)β
(
(β + 2)xB − 1

)

α = 0.13 ± 0.05

β = 4.4 ± 1.0 1.05 15–32% 18–36% 14–31%

neutron

(I) ∆ = 0 1.66

(II) ∆ = α(1 − xB)β
(
(β + 2)xB − 1

)

α = 0.64 ± 0.92

β = 24 ± 10 1.11 18–40%

Table 1. Results of the 1-parameter fits of the WW breaking term ∆ for different choices of its

functional form. The value r of the relative size of the breaking term is computed for three regions of

xB : the entire measured xB range, [0.02,1]; the low-xB region, [0.02,0.15]; and the high-xB region,

[0.15,1]. See text for further details.

To quantify the size of the breaking term ∆ compared to gWW
2 we define, for any interval

[xmin
B , xmax

B ], the ratio of their quadratic integrals

r2 =

∫ ymax

ymin dy x2
B∆2(xB)

∫ ymax

ymin dy x2
Bg

2
2(xB)

, (3.4)

with y = log(xB). The value of r is a good indicator of the relative magnitude of ∆ and g2,

which change sign as a function of xB . In practice we compute r at the average kinematics

of the E155 experiment [9]. For the proton, we consider three intervals: the entire measured

xB range, [0.02,1]; the low-xB region, [0.02,0.15]; and the high-xB region, [0.15,1]. For the

neutron, due to the limited statistical significance of the low-xB data, we limit ourselves

to quoting the value of r for the large-xB region only, [0.15,1].

The results of the fits are presented in table 1 and figure 1. The proton fit displays

a positive WW breaking at large xB and a negative breaking at small xB . The size of

the breaking term is typically 15–35% of the size of g2 (see the r values in table 1). The

neutron fit is completely dominated by the high-precision JLab E01-012 data, which are

concentrated on a very limited xB range; it clearly indicates an 18–40% breaking of the

WW relation at high xB , but cannot be used to conclude much at lower xB values. A

striking feature of the proton WW-breaking term in figure 1 is that it is comparable in

size and opposite in sign to gWW
2 − (gWW

2 )′. It is essential, therefore, to use fits of g1 that

subtract higher twist terms, which would otherwise largely cancel the proton WW-breaking

term and obscure the violation of the WW relation. In the case of the neutron one would

generally obtain an enhancement of the WW-breaking term, although the experimental

uncertainties there are considerably larger.

The theoretical uncertainties come from 3 sources: the fit of g1 and the separation

of its LT and HT components; the neglected Q2 evolution of the breaking term ∆; the

nuclear corrections when dealing with deuterium or 3He targets. Their impact on the ex-
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Figure 1. Top panels : Experimental proton and neutron g2 structure functions compared to gWW
2 .

The crosses represent gWW
2 computed at the experimental kinematics, while the solid lines are gWW

2

computed at the averageQ2 of the E155x experiment. Data points for the proton target [9, 50] have

been slightly shifted in xB for clarity. For the neutron only the high-precision data from [9, 51, 52]

are included. Bottom panels : The WW-breaking term ∆ fitted to ∆ex computed using the LSS2006

gLT

!
(hashed region). The dashed line represents gWW

2 − (gWW
2 )′, the spurious HT contribution to

∆ that would be obtained using the total g1 to compute ∆ex.

tracted breaking of the WW relation will require a separate study; here we limit ourselves

to a few comments:

• Since LSS2006 is the only parametrization that fits gLT
1 and its HT contributions sep-

arately, it is difficult to assess the uncertainty on the performed LT/HT separation.

One particular concern is that there is no universally agreed upon method to perform

TMCs [55, 56]. However, in a global QCD fit (at least for unpolarized PDFs) the

differences between TMC schemes is compensated by the fitted phenomenological HT

term, resulting in stable leading twist PDFs [57] and a small theoretical uncertainty.

The uncertainties originating in the different choices made by different groups per-

forming global fits of g1 are likely to be larger than the residual uncertainty due to

the TMC scheme used.

• The evolution of ∆ with Q2 is known only in the limit of large number of colors [58],

and can be estimated from figure 6 of ref. [59]. In the data set we analyzed, Q2

typically increases with xB, starting from Q2 ≈ 1 GeV2 at xB ≈ 0.01 and reaching

Q2 = O(10) GeV2 at higher xB . If we wanted to move all data points to a common

virtuality value, e.g., Q2 = 2 GeV2, ∆ would qualitatively increase at xB & 0.2

compared to our fit, but so would g2 itself, possibly with little effect on the relative size

of the WW relation breaking. Clearly a quantitative evaluation of Q2 evolution effects

is important, but beyond the scope of this work, also due to the large uncertainties

on the current data.
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• Nuclear corrections for measurements performed on nuclear targets used in this anal-

ysis have typically been computed via the method of effective polarizations. While

this is a reasonable approximation for intermediate values of xB , at very high xB

(xB & 0.6) the method breaks down and nuclear smearing effects must be taken into

account [60, 61]. Although nuclear smearing would typically not significantly affect

integrated structure functions, for small differences such as g2 − gWW
2 its effects will

need a more quantitative evaluation.

In summary, we have found that the experimental data are consistent with a substan-

tial breaking of the WW relation (1.2). Previous analyses have verified the WW relation

only qualitatively, and using parametrizations which do not subtract higher twist terms

in g1. The present analysis clearly demonstrates that this can give the misleading impres-

sion that the WW relation holds to much better accuracy than it does in more complete

analyses. More data are certainly needed to pin down the breaking of the WW relation to

higher precision. New data are expected soon from the HERMES Collaboration and from

the d2n (E06-014) and SANE (E07-003) experiments at Jefferson Lab [62, 63]. Likewise a

detailed study of the theoretical uncertainties associated with the extraction of the WW

breaking term ∆ is called for.

4 Toward a deeper understanding of quark-gluon-quark correlations

In the past, since the LIR-breaking ĝT term was not considered in eq. (2.44) and the quark-

mass term with h1 was neglected, the breaking of the WW relation was considered to be a

direct measurement of the pure twist-3 term g̃T . The presumed experimental validity of the

WW relation was therefore taken as evidence that g̃T is small. This observation was then

generalized to assume that all pure twist-3 terms are small. In contrast, the present analysis

shows that, precisely due to the presence of ĝT , the measurement of the breaking of the

WW relation does not provide information on a single pure twist-3 matrix element. Even

if in future the WW relation were to be found to be satisfied to greater accuracy than the

present data suggest, one could only conclude that the sum of the terms in (2.44) is small,

∑

a

e2a

(
−g̃a

T (x) +

∫ 1

x

dy

y

(
ĝa
T (y) + g̃a

T (y)
))

≈ 0 . (4.1)

This can occur either because ĝa
T and g̃a

T are both small, or because they (accidentally) can-

cel each other. No information can be obtained on the size of the twist-3 quark-gluon-quark

term g̃T from the experimental data on g2 alone. Note that these results were essentially

already obtained in ref. [34]. In that work, however, the authors considered the WW break-

ing to be small and assumed that g̃a
T was small (which we argue is not necessarily the case),

concluding that ĝa
T is also small.

Of course it is desirable to test our conclusions empirically. A reliable way to investigate

g̃T experimentally is through measurement of the function g
(1)
1T . This function is accessible

in semi-inclusive deep inelastic scattering with transversely polarized targets and longitudi-

nally polarized lepton beams (see, e.g., the second line of table IV in ref. [41]). Preliminary
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data related to this function have been presented by the COMPASS Collaboration [64] and

more are expected from the HERMES Collaboration and from the E06-010 experiment at

Jefferson Lab [65]. Using the EOM relation (2.33) and assuming m = 0, one obtains

xg̃T (x) = xgT (x) − g
(1)
1T (x) . (4.2)

In combination with the measurement of the WW breaking, this can be used to determine

the size of twist-3 function ĝT . (Alternatively, one can use the LIR (2.22).)

The importance of separately studying g̃T and ĝT resides in the fact that these are

projections of different combinations of the twist-3 functions GF (x, x′) and G̃F (x, x′). As

with all other terms in the decomposition of the quark-gluon-quark correlator in eq. (2.25),

these functions are involved in the evolution equation of twist-3 collinear PDFs [66, 67],

in the evolution of the transverse moments of the TMDs [68, 69], in the calculation of

processes at high transverse momentum [38], and in the calculation of the high transverse

momentum tails of TMDs [70, 71]. Ultimately, through a global study of all of these

observables, one could simultaneously obtain better knowledge of twist-3 collinear functions

and twist-2 TMDs, and at the same time test the validity of the formalism. Gathering as

much information as one can on the quark-gluon-quark correlator is essential to reach this

goal. The separation of the functions g̃T and ĝT is an important first step in this direction.

5 Conclusions

In this analysis we have shown that the Wandzura-Wilczek relation for the g2 structure

function is violated by a quark mass term, and two distinct pure twist-3 contributions,

containing the parton distribution functions ĝT and g̃T . As evident from their definitions

in eqs. (2.28) and (2.34) respectively, these correspond to two different projections of the

general quark-gluon-quark correlator in eq. (2.24). Their measurement can give unique

and complementary information on twist-3 physics.

The two twist-3 functions have some interesting connections with the formalism of

transverse momentum distributions. One of them is involved in the equation-of-motion re-

lation expressed in eq. (2.33), while the other is involved in the Lorentz invariance relation

in eq. (2.22). Both relations contain the same moment of the transverse momentum distri-

bution g1T . From the theoretical point of view, this is another intriguing example of the

interplay between transverse momentum distributions and (collinear) twist-3 distributions.

From the phenomenological point of view, this means that a measurement of the function

g1T in semi-inclusive DIS in principle allows one to separately measure ĝT and g̃T .

Although the Wandzura-Wilczek relation is often used to simplify the treatment of

TMD physics by approximating g2 ≈ gWW
2 , we stress that there are no compelling theoret-

ical or experimental grounds for supporting its validity beyond leading twist. In fact, using

the experimental information currently available, we were able to provide a quantitative

assessment of the violation of the Wandzura-Wilczek relation, and found that higher-twist

terms may be as large as 15–40% of the measured g2 at the 1-σ confidence level.

As new data become available, it should be possible to better pin down the violation

of the Wandzura-Wilczek relation and measure the transverse momentum dependent dis-
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tribution g1T in semi-inclusive DIS. This will offer us a deeper look into the physics of

quark-gluon-quark correlations and its connection to transverse momentum distributions.
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A TMDs with a non-lightlike Wilson line direction

Factorization theorems beyond tree-level [24, 26, 27, 72, 73] demand a slightly non-lightlike

vector v in order to regularize the lightcone (or rapidity) divergences [74, 75]. In ref. [24]

the Wilson line vector is chosen to be timelike and a parameter ζ2 = 4(P · v)2/v2 is used

as a regulator, with the requirement that ζ2 ≫ M2,k2
T . In other articles in the literature

v has been chosen to be spacelike [25].

In addition to k ·P , k2, P ·v and k ·v, the PCFs Ai and Bi can now in principle depend

also on v2. We can derive the following relation between the invariants

k · v
P · v = ax+

2σ

ζ2(1 + a)
, (A.1)

with a =
√

1 − 4M2/ζ2. Neglecting terms of order M2/ζ2 and σ/ζ2, the above expression

reduces to x. We therefore conclude that the PCFs depend on σ, τ, x and additionally on ζ2.

To be precise, the definition of parton correlation functions in [27] involves an additional

soft factor which is not included in the correlator Φ. The inclusion of the soft factor leads

to an additional dependence on a gluon rapidity parameter. However, we leave this soft

factor aside since it plays no role in our subsequent discussion.

The expressions for the TMDs in eqs. (2.19), (2.20) and (2.21) then become

g1L(x,k2
T , ζ

2) =

∫
dσdτ δ(τ − xσ + x2M2 + k

2
T )

[
−A6 − a

(
B11 + xB12 +

4M2

ζ2(1 + a)
B14

)

− σ − 2xM2

2M2

(
A7 + xA8 +

4M2

ζ2(1 + a)
B13

)]
, (A.2)

g1T (x,k2
T , ζ

2) =

∫
dσdτ δ(τ − xσ + x2M2 + k

2
T )

[
A7 + xA8 +

4M2

ζ2(1 + a)
B13

]
, (A.3)

gT (x,k2
T , ζ

2) =

∫
dσdτ δ(τ − xσ + x2M2 + k

2
T )

[
−A6 −

τ − xσ + x2M2

2M2
A8

]
, (A.4)

The full expression for ĝT which generalizes eq. (2.23) then becomes

ĝT (x) =

∫
d2

kT dσdτ δ(τ − xσ + x2M2 + k
2
T ) (A.5)

×
[
B11 + xB12 +

4M2

ζ2(1 + a)
B14 −

k2
T

2M2

(
∂A7

∂x
+ x

∂A8

∂x
+

4M2

ζ2(1 + a)

∂B13

∂x

)]

+ π

∫
dσdτδ(τ−xσ+x2M2+k

2
T )k2

T

σ−2xM2

2M2

(
A7+xA8+

4M2

ζ2(1+a)
B13)

)∣∣∣∣
k2

T
→∞

k2
T
→0

.
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Figure 2. Diagrams in the quark-target calculation involving only real gluons. The Hermitean

conjugate diagrams, which are not shown, are also taken into account in the calculation.

Figure 3. As in figure 2 but for diagrams involving virtual gluons.

B Parton correlation functions for a quark target

In this appendix we compute the parton correlation functions relevant for our discussion of

the WW relation for the case of a point-like quark target. The calculations are performed

in the first non-trivial order in perturbative QCD (i.e., at order αs) [37, 44]. To this end

we insert a complete set of intermediate states into eq. (2.1). To order αs, only the vacuum

state and a one-gluon state are relevant. The involved Feynman diagrams are shown in

figure 2 (real gluon contributions) and figure 3 (virtual gluon contributions).

The correlator may be written as

Φij(k, P, S; v) = δ(4)(P − k)Φvir
ij (m2, λ2, ζ2, µ2

R) + Φreal
ij (k, P, S; v) , (B.1)

where Φvir denotes the contributions from the vacuum intermediate state. Its kinematics is

totally determined by the four-dimensional delta-function δ(4)(P − k) and depends only on

the quark mass m, with a small gluon mass λ serving here as an infrared regulator, and the

parameter ζ2 = 4(P · v)2/v2 which regulates lightcone divergences. By applying a renor-

malization procedure we can subtract ultra-violet divergences in Φvir, which introduces a

dependence on the renormalization point µ2
R. The virtual corrections can be written as

Φvir
ij (k, P, S; v) = δ(4)(P − k)〈P, S, d| ψ̄j(0)Wv

(0,∞) |0〉〈0|Wv
(∞,0) ψi(0) |P, S, d〉 , (B.2)

where the incoming on-shell quark is described by the state |P, S, d〉, with d a color index

of the quark in the fundamental SU(3) representation. For the sake of brevity we will omit

the explicit dependence on and summation over the color indices in the following. Since

we work in Feynman gauge, possible contributions from gauge links at lightcone infinity

are irrelevant [16].

The second contribution in eq. (B.1) is generated by one gluon in the intermediate

state. To order αs it is given by

Φreal
ij (k, P, S; v) =

1

(2π)3

∑

σ,β

δ+((P − k)2 − λ2)M
σ,β
j (k, P, S; v)Mσ,β

i (k, P, S; v) , (B.3)
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with M ≡ M †γ0, δ+(a2) ≡ δ(a2)Θ(a0), σ denotes the polarization of the gluon in the

intermediate state, and β is its color index in the adjoint representation of SU(3). The

matrix element M is then represented by

Mσ,β
i (k, P, S; v) = 〈P − k, σ, β|ψi(0)|P, S, d〉+ ig

∫ ∞

0
dλ 〈P − k, σ, β|v ·A(λv)ψi(0)|P, S, d〉 ,

(B.4)

where |P − k, σ, β〉 denotes the intermediate gluon state with a color index β. The leading

perturbative contribution in αs to the matrix element M gives

Mσ,β
i (k, P, S; v) = −gtβ

(
(/k +m)/ε∗σ(P − k)

[k2 −m2 + iǫ]
+

v · ε∗σ(P − k)

[v · (P − k) + iǫ]

)

il

ul(P, S) , (B.5)

where ε(P − k) denotes the gluon polarization vector and u is the quark spinor. The color

flow is given by the color matrix tβ in the fundamental representation. Inserting (B.5)

into (B.3) then yields

Φreal
ij (k, P, S; v) = − αs

(2π)2
CF δ

+((P − k)2 − λ2)

×
[

(/k +m)γµ(/P +m)(1 + γ5/S)γµ(/k +m)

[k2 −m2 + iǫ][k2 −m2 − iǫ]
+

(/P +m)(1 + γ5/S)/v(/k +m)

[k2 −m2 − iǫ][v · (P − k) + iǫ]

+
(/k +m)/v(/P +m)(1 + γ5/S)

[k2 −m2 + iǫ][v · (P − k) − iǫ]
+

v2(/P +m)(1 + γ5/S)

[v · (P − k) + iǫ][v · (P − k) − iǫ]

]

ij

.

(B.6)

The various parton correlation functions in eq. (2.2) can be extracted from eq. (B.6) by

decomposing the numerators in terms of the basis matrices 1, γ5, γ
µ, γµγ5 and σµν . In

this way we obtain expressions for parton correlation functions at leading order in αs

for a quark target. In the following we list only the PCFs A6−8 and B11−14 which are

relevant for the discussion of the Wandzura-Wilczek relation, cf. eqs. (2.19)–(2.21). Setting

a =
√

1 − 4m2/ζ2, we find (to order αs)

Areal
6 (τ, σ, x, ζ2) =

CFαs

2π2
δ+(τ − σ +m2 − λ2)

×
[

τ +m2

(
τ −m2

)2 +
(1 + a)(1 + ax) + 2σ/ζ2

[
τ −m2

][
(1 + a)(1 − ax) − 2σ/ζ2

]

+
2(1 + a)2[

(1 − ax)2(1 + a)2ζ2 − 4σ(1 − ax)(1 + a) + 4σ2/ζ2
]
]
, (B.7)

Areal
7 (τ, σ, x, ζ2) = 0, (B.8)

Areal
8 (τ, σ, x, ζ2) =

CFαs

2π2
δ+(τ − σ +m2 − λ2)

[
−2m2

(
τ −m2

)2

]
, (B.9)

Breal
11 (τ, σ, x, ζ2) =

CFαs

2π2
δ+(τ − σ +m2 − λ2)

×
[

−(1 + a)[
τ −m2

][
(1 + a)(1 − ax) − 2σ/ζ2

]
]
, (B.10)
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Breal
12 (τ, σ, x, ζ2) =

CFαs

2π2
δ+(τ − σ +m2 − λ2)

×
[

(1 + a)[
τ −m2

][
(1 + a)(1 − ax) − 2σ/ζ2

]
]
, (B.11)

Breal
13 (τ, σ, x, ζ2) =

CFαs

2π2
δ+(τ − σ +m2 − λ2)

×
[

−(1 + a)[
τ −m2

][
(1 + a)(1 − ax) − 2σ/ζ2

]
]
, (B.12)

Breal
14 (τ, σ, x, ζ2) = 0 . (B.13)

These results demonstrate that all terms in eq. (A.5) contribute to generate a nonzero ĝT

since

(i) the Bi terms are nonzero,

(ii) the PCFs can depend explicitly on x, and

(iii) the boundary term at k2
T = ∞ cannot be neglected.

C Quark target TMDs and PDFs at x < 1

We are now in a position to calculate the TMDs for a quark target defined in eqs. (A.2)–

(A.4), their kT -integrals appearing in the LIR of eq. (2.22), and the function ĝT as defined

in eq. (A.5). Similar calculations have been performed in [24, 37, 44, 76, 77]. Without

entering into details, we note that the light-cone divergences occurring for ζ → ∞ can be

moved to x = 1, introducing the well-known “plus” distribution [24, 33]. If we restrict

ourselves to the region x < 1, the results are free of light-cone divergences and do not

depend on ζ. In this region we can use either eqs. (A.2)–(A.4) or (2.19)–(2.21). The

resulting functions are then given by

g1L(x < 1,k2
T ) =

2CFαs

(2π)2
1

k2
T + xλ2 + (1 − x)2m2

×
[
1 − x− 2(1 − x)(1 − x(1 − x))m2

k2
T + xλ2 + (1 − x)2m2

+
2x

(1 − x)+

]
, (C.1)

g1T (x < 1,k2
T ) = − 2CFαs

(2π)2
2x(1 − x)m2

(k2
T + xλ2 + (1 − x)2m2)2

, (C.2)

gT (x < 1,k2
T ) =

2CFαs

(2π)2
1

k2
T + xλ2 + (1 − x)2m2

×
[
x− (1 − x)2(1 + x)m2

k2
T + xλ2 + (1 − x)2m2

+
1 + x

(1 − x)+

]
. (C.3)

When working with non-lightlike Wilson lines, it is not clear how to obtain the collinear par-

ton distribution functions upon integration over the transverse momentum [24]. However,

at the one-loop level these subtleties are relevant only at x = 1. Since we restrict ourselves

to the region x < 1, we can safely compute collinear PDFs through kT -integration. For
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simplicity we choose an upper boundary Q for the kT -integration, and shift quark mass

effects into the finite part by introducing an arbitrary infrared cutoff µ in order to obtain

agreement with the results of refs. [37, 44]. The divergent parts of the parton distributions,

i.e., the terms including the upper cutoff Q, are given by

g1L(x < 1) =
αsCF

2π

1 + x2

(1 − x)+
ln
Q2

µ2
, (C.4)

gT (x < 1) =
αsCF

2π

1 + 2x− x2

(1 − x)+
ln
Q2

µ2
, (C.5)

g
(1)
1T (x < 1) = −αsCF

2π
x(1 − x) ln

Q2

µ2
. (C.6)

These results have appeared earlier in refs. [24, 37, 44, 76, 77], but have been derived here

for the first time starting from the PCFs.

For ĝT at x < 1, using either eq. (A.5) or eq. (2.23) we obtain

ĝT (x < 1) =
αsCF

2π
ln
Q2

µ2
, (C.7)

confirming the result in eq. (2.32), which was not obtained directly but rather using the

LIR relation eq. (2.22).
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